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Abstract. The knowledge an attacker gathers about the critical infras-
tructure network they infiltrate allows them to customize the payload
and remain undetected while causing maximum impact. This knowledge
is a consequence of internal reconnaissance in the cyber network by lat-
eral movement and is enabled by exploiting discovered vulnerabilities.
This stage of the attack is also the longest, thereby giving a defender the
biggest opportunity to detect and react to the attacker.
This paper helps a defender minimize the information an attacker might
gain once in the network. This can be done by curbing lateral movement,
misdirecting the attacker or inhibiting reachability to a critical device.
We use a linear threshold models of attack propagation to analyze po-
tential attack loss and use this to find actions that a defender might
invest in while staying within their budgetary constraints. We show that
while finding the best solution subject to these constraints is computa-
tionally intractable, the objective function is supermodular, allowing for
a tractable technique with a known approximation bound.

1 Introduction

An attack on a critical infrastructure is most effective when the attacker un-
derstands the cyber network as well as the physical process under control. The
attacker primarily gains this knowledge in the reconnaissance stage. The goal
during this phase is to learn more about the environment by lateral movement
which is enabled by exploiting vulnerabilities in devices and thereby increasing
network penetration. This stage is also the longest phase of the attack, thereby
giving the best opportunity to discover and possibly respond to the presence of
an attacker.

This paper provides the defender with a tool to minimize the information an
attacker might gain during the reconnaissance stage. The defender response can
be some combination of curbing lateral movement, misdirecting the attacker or
inhibiting reachability to a critical device. We model the propagation of attack
through the network, and use this to find actions that a defender might invest
in while staying within their budgetary constraints.

Attack graphs have been used to map possible paths an attacker might take
within a network to reach their goal. Given the scale of the network and the
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possible states it can be in, the size of an attack graph can be in the order of
thousands of nodes. And, while there has been work in the past that looks at
generating such graphs and verifying them [24], [23], very little work has been
done on using such a graph to harden the network [8]. We argue that at the scale
of current attack graphs, it is very hard for an analyst to make useful decisions
without exploiting properties of the graph and the metric in question.

We pose the question of network hardening in terms of modifying the attack
graph (deleting edges) and show that despite the problem being computationally
complex, there exist properties that can be exploited to get guarantees on the
analysis.

Our Contributions

In this paper we formally define the network hardening problem against a model
of attacker reconnaissance. The paper makes the following contributions:

1. We describe the attack propagation model under an attacker whose goal is
to maximize knowledge of the network.

2. We show that the network hardening problem is NP-hard.
3. Using special properties of the defender metric, we show that a greedy algo-

rithm performs with a provable approximation bound of 1− 1
e .

4. We improve the complexity of the greedy algorithm from quadratic to linear.

We will first present some background on the cyber kill chain in critical
infrastructures, diffusion processes and supermodularity as it relates to the net-
work hardening problem (Section 2). We then proceed to formally define the
network hardening under reconnaissance problem by describing models of at-
tack propagation through attack graphs and of defender actions (Section 3). We
then use the notion of live-edge graphs to inform our proofs of supermodularity
and monotonicity of the objective function under defender actions (Section 4).
Finally, we present the algorithm for efficiently solving the supermodular opti-
mization problem we describe (Section 5) before presenting a discussion (Section
7) and concluding.

2 Background

2.1 Critical infrastructure attacks

Our analysis of recent attacks, including the power outage in Ukraine in 2015 and
2016 [16] as well as the 2017 attack on a Saudi Arabian oil and gas facility [15],
shows that in order to remain inconspicuous, attackers avoid using malware and
techniques that can be associated with adversarial behavior. This type of attack
is known as living off the land. The success of these attacks comes from the
ability of the attacker to move in the network by building a knowledge base
in and about the network. It is important to note that while most defensive
counter measures dwell on monitoring and protecting against the final impact of
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an intrusion, the biggest opportunity lies in the steps that lead up to the final
step. To this end, the Industrial Control System (ICS) Cyber Kill Chain which
was developed to help the defender characterize an attack, can be used as a tool
to understand the stages of an intrusion leading up to an attack. A detailed
description of the kill chain can be found at [16], but our focus will be on the
internal reconnaissance stage.

Internal reconnaissance is the phase where the attacker attempts to find po-
tentially interesting targets, as well as tries to acquire passwords or other creden-
tials in order to attain an increased access to the system. Using these acquired
credentials, attackers move laterally and repeat while maintaining stealthy pres-
ence. The goal is to be able to understand the network and the process being
controlled well enough to be able to develop and deliver an attack that has the
intended impact. An example of this can be observed in the second attack on
Ukraine’s power grid where the attacker understood the ability of the safety con-
trol system to thwart their intended impact and used this knowledge to develop
a device specific DoS attack for the safety controls. Gaining this information
and formulating usable knowledge from it takes attackers a long time, in certain
cases up to a year (Ukraine 2015). Thus, while the delivery of the final attack
might be instantaneous thereby requiring detection to be high precision and
to act in real-time, a greater opportunity for detecting/preventing attack is to
monitor/block the reconnaissance activity of an attacker.

Implementing a defense-in-depth strategy improves security by raising the
cost of an intrusion for an adversary while simultaneously improving the proba-
bility of detection by the defender. The end goal is to reduce the opportunities
for an adversary to take advantage of the ability to move laterally through a
critical infrastructure network. The use of multiple layers not only helps prevent
direct attacks against critical systems but also greatly increases the difficulty of
reconnaissance activities on ICS networks. Our goal in this paper is to develop
a systematic methodology for implementing such hardening techniques.

2.2 Diffusion Networks

Diffusion networks are used to model the spreading behavior of disease, influence
or information through large networks. In its basic form a diffusion network
is a set of nodes with directed edges that indicate the potential transmission
of information, disease etc. A transmission matrix is used to indicate pairwise
transmission rates between the nodes. Various diffusion models [10], [7] proposed
in the literature mostly differ in the how the transmission of infection is modeled.

Linear Threshold Model A commonly used diffusion process (and of special
interest to us) that models influence spread is the linear threshold model [9]. At
its core, it is a weighted directed graph G = (V,E,w) called the influence graph,
where V is the set of nodes, E is a set of directed edges and w : V × V → [0, 1]
is the weighting function on the edges. For any edge (u, v) /∈ E, w(u, v) is not
defined. Further, for every node v ∈ V , it is required that

∑
u:(u,v)∈E w(u, v) ≤ 1
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i.e. the sum of weights from all incoming neighbors is at most 1. Given such
an influence graph and a source node S0 = {a}, the cascade diffusion process
proceeds in discrete time steps t = 0, 1, 2, ... as follows:

1. at the initial time step t = 0, every node v ∈ V independently selects a
threshold θv ∈ [0, 1] uniformly at random. This captures our uncertainty in
nodes’ true thresholds against influence;

2. in every subsequent step (t + 1), an inactive node, v, becomes active if the
sum of incoming influence exceeds the threshold∑

u:u∈St,(u,v)∈E

w(u, v) ≥ θv

where St is the set of nodes activated until the previous timestep t;
3. the process terminates when no more nodes can be activated.

2.3 Supermodular Set Functions

In this work we will reduce the question of finding defensive interventions into
an optimization problem which minimizes the knowledge gained by an adversary
subject to budgetary constraints. We will see that while the objective function
will turn out to be NP-hard to optimize, it possesses the special property of
supermodularity.

A set function f : 2S → R defined over the power set 2S of a set S is called
supermodular iff ∀A ⊆ B ⊂ S, ∀s ∈ S \B:

f(A ∪ {s})− f(A) ≤ f(B ∪ {s})− f(B)

The property essentially states that for a non-decreasing supermodular set
function f , the marginal utility obtained by adding a new element to a larger set
is greater than the utility of adding the element to any subset of the larger set.
This property is referred to as the increasing differences property, as opposed to
the more commonly seen diminishing returns property of submodular functions
[12].

Most optimization literature focuses on submodular objective functions, which
we will use to inform our analysis of our supermodular objective. It has been
shown that submodular maximization is NP-hard [4] as can be intuited by the
combinatorial explosion of possible subsets. However, a proof by Nemhauser et
al. [21] shows that a greedy algorithm for maximizing a monotone submodular
function (or in our case minimizing a monotone supermodular function) while
subject to cardinality constraints can provide a constant factor approximation
of 1− 1

e ≈ 63%.

3 Problem Statement

In order to find a set of actions that the defender can implement to harden
the network, we need a model of the services in the network (knowledge about
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these services is what the attacker is after), a model for how the attacker gains
this knowledge through internal reconnaissance, and a measure of how good the
defender strategy is, thereby allowing us to quantitatively harden the system. In
this section, we describe each of these requirements and formalize the network
hardening problem. At a high level, we need to find a hardening policy π that
minimizes knowledge an attacker gains Q(π) while making sure that the cost
of the policy stays within a given security budget B. We explore each of the
elements of the following optimization later in the paper.

minimize
π

Q(π) subject to cost(π) ≤ B

3.1 Attack Graph

An attack graph is a graphical model that represents the defenders’ knowledge
about network components, services, their vulnerabilities and their interactions,
showing the different paths an attacker can follow to reach a given goal by
exploiting a set of vulnerabilities. Along each attack path, vulnerabilities are
exploited in sequence, so that each successful exploit gives the attacker more
knowledge thereby leading to an increased foothold in the network.

Uncertain attack graphs [22], extend the notion of an attack graph by al-
lowing for uncertainty in edge existence. Formally, an uncertain attack graph
A = (V,E, p) is a directed graph, where the nodes in V represent states of an
attack and a directed edge in E represents the transition between states. Each
edge (i, j) ∈ E is associated with a transition probability pij i.e. the likelihood
that an attacker can compromise state j given the knowledge from the current
compromised state i.

A state in the model represents an atomic unit of knowledge, gaining which
allows the attacker to make better decisions about the subsequent stages of re-
connaissance. Think of the attacker starting blind (or with partial visibility) and
each node that they get a foothold on adds to their visibility into the system and
its processes. One simple way of depicting a state is as a tuple of host identity,
service and privilege level on the service. Thus the knowledge gained from a state
is the knowledge available on that host service when attacker achieves the priv-
ilege level needed. A transition corresponds to an atomic attacker action that
leads to an increased gain in knowledge. Examples of transition include pass-
word guessing to escalate privilege, vulnerability exploitation to gain foothold
on previously uncompromised host and active scans to detect new services.

A successful reconnaissance campaign is a sequence of transitions or paths in
the graph that leads to knowledge states from where an attacker can affect the
process being controlled in the critical infrastructure. One metric to measure
success of attacker reconnaissance is to count the number of nodes that are
infected at the end of the attack propagation phase, but we will dive deeper on
these issues in the upcoming sections.
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3.2 Attack Propagation Model

We define the attack propagation model as follows, based on the linear threshold
diffusion model in [9].

1. The attacker starts with an initial knowledge S0, where S0 ∈ V is a subset
of nodes in the uncertain attack graph.

2. Each node v has a threshold θv ∈ [0, 1]. This represents the weighted fraction
of neighbors that must be compromised in order for v to be compromised.
The value for the threshold is drawn at random. This threshold is the reason
why the attack propagation process is stochastic.

Let us explore the threshold θv a little more. By definition, it can be inter-
preted as the likelihood that a node is compromised given that it’s neighbors
have been compromised. In the case of complete knowledge, about the services
running on a node or attacker capabilities, the threshold is no longer a random
variable. However, we more commonly encounter situations of uncertainty re-
garding θv. One scenario being the lack of detailed knowledge of services, their
versions and the vulnerabilities in the network. Note that sometimes, despite per-
fect knowledge of the network, uncertainties arise from unknown unknowns such
as zero-day vulnerabilities. Another scenario is limited understanding of attacker
capabilities, for example an adversary may possess information that is gained
external to the reconnaissance activity, thereby allowing them to compromise a
node without having to compromise all its neighbors.

Given this uncertainty in the node threshold θv, the subsequent question is
how to model it. Traditionally in the Linear Threshold model, it is assumed
that θv is sampled from a standard uniform distribution (U [0, 1]). However, this
does not capture any knowledge that the defender might possess. We suggest
using a Beta distribution to sample the node threshold. The parameters αandβ
of a Beta(α, β) allow the defender to capture their prior knowledge. In the base
case of α = β = 1, we end up with a U [0, 1] which captures complete lack of
knowledge.

Thus, given the initial knowledge of the attacker (an initial compromised
set) and the thresholds of all the uncompromised nodes, the attack propagation
process unfolds in discrete time steps: at time t all nodes that were compromised
in timestep t−1 remain compromised and any uncompromised node v is activated
as: ∑

w:(v,w)∈E

pvw ≥ θv

3.3 Modeling Prior knowledge of Attacker

Attackers can often gain auxiliary knowledge about the control system devices
and processes from sources external to the network. They might know device
manufacturer names and model numbers from reading public documents such
as public presentations and requests for tender (similar to the attack on the
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Kudankulam Nuclear Power Plant [1]). This has in the past, allowed attackers to
successfully conduct watering hole attacks by adding malware to vendor websites
[20]. Adversaries can also acquire attacks for known vulnerabilities on the dark
web, thereby making the lateral movement process faster. They might acquire
stolen passwords for system operators of one system from an attack that was
not targeted for it, like in the case of the Ukraine attack where some passwords
were gained as a consequence of the ransomware notPetya (that did not target
ICS specifically) [16]. Thus, an attacker starts in the network with some prior
knowledge. We model this by designating a subset of the nodes as compromised
at the start of the attack propagation process. S0 ⊆ V is the knowledge an
attacker possesses at time t0. In order to simplify computation we add a dummy
node s to the set of nodes V with edges to the nodes S0 each with probability
1. This allows us to designate s as the source node for attacks while allowing us
to maintain S0 as the initial foothold of the attacker.

3.4 Defender Actions

Knowledge reduction is equivalent to reducing the coverage of nodes in the un-
certain attack graph. We define two actions a defender can perform to harden
the network.

1. Add a security rule. We consider scenarios where a firewall or intrusion
prevention system is present in the network and the defender adds a fixed
rule or signature that the security appliance must match against to decide
if a flow is permitted or not. Adding a rule is equivalent to reducing the
edge traversal probability of an edge in the attack graph. If the defender
believes that a rule prevents the attacker from reaching the next knowledge
state then the edge is deleted i.e. edge traversal probability goes to zero. In
this work we only consider the latter scenario where an edge is completely
removed from the attack graph. We discuss the limitation of this in Section
7.

2. Add a security appliance or apply a patch. When a new security appliance
is added to the network with the correct configuration or when a known
vulnerability is patched, multiple edge traversal probabilities are modified
by a single action. However, such an action has a higher cost associated with
it. In the case of a new security appliance this might be the capital cost of
the technology and its deployment as well as the operational cost of hiring
analysts to dig through false positives. In the case of patching the cost is
mostly that of testing the patch in an identical environment before deeming
it fit to be reproduced in the operational network.

The set of actions that a defender undertakes is known as the policy π. Each
policy π is a set of deleted edges corresponding to defender actions. We denote
the implementation of a policy as a modification to the uncertain attack graph
A:

Aπ = A(V,E \ π, p)
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A policy is feasible if the total cost of actions taken is no greater than a given
budget limit B. For a given uncertain attack graph A with an initial infection S0,
the network hardening problem is to select the optimal policy among all feasible
policies, such that the information gained by the attacker is minimized.

3.5 Objective Function

We define two metrics of interest in the network hardening problem: penetrability
and expected risk.

Definition 1. Penetrability of an uncertain attack graph A is defined as the
expected number of compromised nodes at the end of an attack propagation pro-
cess that starts at an initial foothold, S0.

P(A) = E[S∞] (1)

where S∞ is the number of nodes that are compromised at the end of attack
propagation.

Penetrability is analogous to reachability in stochastic reliability graphs. In a
deterministic attack graph, penetrability is defined as the number of nodes that
can be reached from a source set S0.

We recall that the uncertain attack graph A is a probabilistic graph. A prob-
abilistic graph can be a generator for 2|E|-many deterministic graphs, based on
the presence or absence of an edge. In the case of uncertain attack graph A,
each deterministic graph it generates is called an attack scenario. Each attack
scenario is a possible set of nodes that an attacker has visited using the set of
compromised edges. Note that not all of the 2|E|-many attack scenarios may be
plausible, and thus can be excluded from the search space.

Definition 2. Risk Consider an attack scenario A ∈ ΩA, where ΩA is the
space of attack scenarios that can be generated from uncertain attack graph A.
Also, a loss function, L : A→ R+, for attack scenario A, L(A). The risk for a
network modeled by the uncertain attack graph A is defined as the expected loss
across all possible attack scenarios:

R(A) =
∑
A∈ΩA

Pr[A]L(A) (2)

The goal of the loss function is to quantify the direct (monetary loss due to
equipment damage and repair) and indirect losses (loss of intellectual property)
a critical infrastructure network faces under attack. The loss function is generally
monotone non-decreasing: the more nodes an attacker compromises the greater
the loss. While, there is more discussion on loss functions in Section 7, in this
work we only look at monotone loss functions defined as follows:
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Definition 3. Given an attack scenario A ∈ ΩA, the loss under such an attack
can be computed as:

L(A) =
∑

i∈P (A)

ci (3)

where ci is the dollar cost of losing the knowledge stored in node i to the attacker
and P (A) is the set of compromised nodes in A.

We understand that there is uncertainty associated with deriving the value
ci. One source of uncertainty is from attributing the loss as either a loss of
confidentiality or one of availability. A loss in confidentiality is characterized by
the loss of industrial secrets and proprietary technology present on a node. A
loss in availability is due to denial of service which can range from monetary loss
due to a blackout for few hours to equipment damage. Thus this loss is more
of a distribution rather than a number. While understanding this, we defer this
to future work and allow for a treatment of ci as a number which the user can
either define as worst case or average monetary loss based on their analysis.

In any network, some nodes (say an authentication server or the data histo-
rian) are more valuable than others. The risk metric intrinsically captures the
case where nodes are valued differently. Also, note that the risk metric can be
used to define Penetrability. If L(v) = 1 for every node v ∈ A and L(v) = 0
for every other node, the expected loss is the expected number of nodes reached
at the end of attack propagation. While the risk metric is a general solution, it
requires more information from the defender, thereby making penetrability a vi-
able alternative. Under this alternate definition, penetrability can be formalized
as:

P(A) =
∑
A∈ΩA

Pr[A]r(A) (4)

where r(A) is the {0, 1} loss function describing the number of nodes that can
be reached in an attack scenario A.

3.6 Constraints

There is a cost associated with each defender action and the security budget
must be split such that the defender actions that restrict attacker movement
most should be preferred over the rest. In a simple case where all defender
actions cost the same, a cardinality constraint can be used (total number of
deleted edges is less than or equal to the budget). In most cases however, the
cost is more of a knapsack constraint i.e. the sum of costs of each action must
be below the budget.

Considering the objective function and the constraints we defined in this
section, the network hardening problem can be translated into the following
optimization problem:

argmin
π⊆E

Q(A \ π) subject to
∑
i∈π

ki ≤ B (5)
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Where, the functionQ(A) can be substituted for either P(A) orR(A) depending
on the analysis.

4 Analyzing the Objective function

In this section we analyze some interesting properties of the objective function.
Specifically, we show that the objective function is monotonically decreasing and
supermodular in the policy π.

4.1 Live Edge Paths

Influence maximization literature shows that an alternate method to compute
the influence function under the linear threshold process is using live-edge paths
in the influence graph. The claim (as proved in [9]) is that given an initial set
of nodes, S, the distribution over active nodes obtained by running the linear
threshold process to completion is the same as the distribution of nodes reachable
from S via live-edge paths, where the live-edge paths are selected as described
below:

Each node v ∈ V picks at most one of its incoming edges at random with
probability puv and selects no edge with probability 1−

∑
u:(u,v)∈E puv.

Note that the set of nodes in the generated live-edge graph X is equal to V
and the set of live edges, EX is a subset of E, i.e., EX ⊆ E. Also note that these
sampled edges are unweighted and each vertex has at most one incoming edge.

We will use this live-edge graph to inform our proofs of monotonicity and
supermodularity. Before we get to the proofs, we make some useful observations.
The probability of a node v ∈ V having the edge configuration as seen in attack
scenario A is given by:

p(v,A,A) =

{
puv if ∃u : (u, v) ∈ EA
1−

∑
u:(u,v)∈E puv otherwise

(6)

where EA is the set of edges in A. Using this, we can get the probability of
a scenario graph A as:

Pr[A] =
∏
v∈V

p(v,A,A) (7)

Note that the loss (L(A)) term is deterministic given an instance of the
scenario graph A. The likelihood term is computed as shown in Equation 7.

4.2 Monotonicity

In this section, we prove that the objective function is monotonically decreasing.

Lemma 1. The reachability function r(A \ π) is a monotonically decreasing
function of the policy π.



Hardening Critical Infrastructure Networks Against Attacker Reconnaissance 11

Proof. Given a scenario graph A ∈ ΩA, we need to show that for any policy
π ⊆ E and an edge e = (u, v) ∈ E \ π

r(A \ π)− r(A \ {π ∪ e}) ≥ 0

Since, A is a live-edge graph such that each vertex v ∈ V has at most one
incoming edge it can be seen that removing an edge e = (u, v) to v will make it
unreachable from the source s. In fact, if v is not a leaf node, then all its children
are rendered unreachable by the removal of edge e. Thus, the number of nodes
reachable in A \ π is higher than that in A \ {π ∪ e} �

Lemma 2. The loss function L(A \ π) is a monotonically decreasing function
of the policy π.

Proof. Similar to Lemma 1 we must show that

L(A \ π)− L(A \ {π ∪ e}) ≥ 0

By definition, the loss function is a linear combination of non-negative costs
based on the reachability of nodes. Thus, since the reachability in A\π is higher
than that in A \ {π ∪ e} by at least 1 (due to v), the loss is also higher by at
least cv, which is non-negative �

Theorem 1. R(A \ π) is a monotonically decreasing function of the policy π.

Proof. We defer the proof to the appendix for better readability.

Theorem 2. P(A \ π) is a monotonically decreasing function of the policy π.

Proof. This proof follows the same structure as above and uses Lemma 1 in the
final step �

4.3 Supermodularity

s u

u’
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v’ w
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e’

t

Fig. 1. Proof of supermodularity.
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Lemma 3. The reachability function r(A\π) is a supermodular function of the
policy π.

Proof. In order to prove supermodularity, we must show for an attack graph
A = (V,E, p), a subset of edges to be deleted π ⊂ E and two edges e, g ∈ E \ π)
that

r(A \ π)− r(A \ π ∪ {e}) ≥ r(A \ π ∪ {g})− r(A \ π ∪ {e, g})
Figure 1 illustrates our proof. Note that in the live edge graph model, each

node has at most one incoming edge as shown in the figure. Consider the scenario
shown in the figure to be the A \ π. The difference we are computing is the
reduction in reachability when an edge is deleted from this graph. We consider
two cases: (1) deleting an edge e′ that does not fall in the same path as edge g
and (2) deleting an edge e in the same path as edge g. In case 1, deleting edge
e′ from A \ π leads to the same reduction as in A \ π ∪ {g}. This is due to the
fact that the deletion causes the same set of nodes to become unreachable. Thus,
case 1 leads to equality. In case 2, deletion of the edge e from A \ π disconnects
additional nodes which had edge g in their path from the source. Thus in case 2,
the reduction in reachable nodes is greater when e is deleted from A \ π instead
of A \ π ∪ {g} �
Lemma 4. The loss function L(A \ π) is a supermodular function of the policy
π.

Proof. Similar to Lemma 3, we must show

L(A \ π)− L(A \ π ∪ {e}) ≥ L(A \ π ∪ {g})− L(A \ π ∪ {e, g})
Note that in the reachability function, the marginal value after the difference

represents the number of nodes that are rendered unreachable after the edge e
is deleted. Since the loss function is a linear function of reachability it can be
seen that the marginal loss is in fact the sum of costs of nodes that are rendered
unreachable by deleting e. Thus, it can be seen that for non-negative costs, the
marginal loss is greater when e is deleted from A \ π instead of A \ π ∪ {g} �
Lemma 5. If f(S) is a supermodular function then its expectation E[f(S)] is
a supermodular function of S.

Proof. This is a simple extension of the fact that supermodular functions are
closed under linear combinations and the expectation function is essentially a
non-negative weighted sum of the supermodular function.

Theorem 3. Penetrability is supermodular in the policy π.

Proof. We note that by the live edge definition in Equation 4, penetrability is
essentially the expected reachability in an attack graph. Hence, by Lemma 3 and
Lemma 5 it can be seen that P(A \ π) is supermodular in the policy π �

Theorem 4. Risk is supermodular in the policy π.

Proof. Risk is by definition (Equation 2) expected loss. Hence, by Lemma 4 and
Lemma 5 it can be seen that R(A \ π) is supermodular in the policy π �
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5 Algorithm

In the previous section we showed our hardening objective functions to be mono-
tone and supermodular under the linear threshold model of attack propagation.
Our optimization problem is one of minimizing a monotone supermodular func-
tion under a knapsack constraint. In the case where every defender action has
the same cost and we can perform k defender actions, the total possible policies
are

(|E|
k

)
. It is combinatorially hard to search this large space for an optimal pol-

icy. In fact, the problem of maximizing a monotone submodular function (and
in our case a monotone supermodular function) under a cardinality constraint
has been shown to be NP-hard [12]. The proof is a reduction of the vertex cover
problem [9].

5.1 The Greedy Algorithm

A naive approach is to find approximate solutions using the greedy algorithm.
The algorithm starts with an empty policy π = ∅ and proceeds in an iterative
fashion. There are a total of k iterations (cardinality constraint: |π| ≤ k). In the
j-th iteration we pick an edge e such that e = argmaxe∈E\π∆(e), where ∆(e) is
the marginal loss defined as R(A\π)−R(A\ (π∪{e})). Note that similar steps
apply to the Penetrability objective.

A fundamental result by Nemhauser et al. [21] shows that under the cardi-
nality constraint, this greedy algorithm produces a near optimal solution. The
greedy algorithm will choose a policy π such that R(A \ π) ≥ 1− 1

e R(A \ π∗),
where π∗ is the optimal policy for hardening the network.

Drawbacks of Naive Greedy While the greedy algorithm gives a near optimal
solution, it needs some tweaks in the practical setting. Note that the R(A \ π)
function is evaluated every time we need to find the edge that maximizes ∆(e).
Also, computing this function accurately is #-P hard as shown in [3]. Thus, we
need a way to approximate the expected risk in sub-linear time.

5.2 Monte Carlo Estimation

In order to find an approximation of risk, we use Monte Carlo estimation. To esti-
mate the risk, the Monte Carlo estimator first draws N possible attack scenarios
denoted by A0, A1, ..., AN from the attack graph A using the live-edge sampling
rule stated in Equation 6. Then, for each possible attack scenario Ai, the algo-
rithm evaluates the loss function L(Ai). Finally, the risk estimate (denoted by
R̂) is obtained by:

R̂(A) =
1

N

∑
i∈N

L(Ai) (8)

Note that due to the linear combination property of supermodular functions,
this estimated expected risk is also monotone and supermodular in the policy π.
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Given this estimate, the marginal loss ∆(e) is given by:

1

N

∑
i∈N

L(Ai \ π)− L(Ai \ π ∪ {e}) (9)

5.3 Knapsack Budget Constraint

When the defender actions have different costs, the simple greedy algorithm can
perform arbitrarily badly. However, an algorithm that defines a loss-cost ratio
∆(e)/ke and uses partial enumeration along with the greedy step of picking the
edge e ∈ E that maximizes the loss-cost ratio at every iteration has been shown
to achieve an approximation guarantee of 1− 1

e [26] [13].

5.4 Complexity of the Greedy Algorithm

Note, that in a given iteration we need to compute the marginal loss for every
edge e ∈ E \ π and every scenario Ai. This involves a breadth first search
(O(|V | + |E|)) to compute reachability which is then used to compute loss.
Note that in the live edge graphs, we have at most |V | edges since each node
can have only one incoming edge. Thus, the complexity of each iteration is
O(|V |2 + |V ||E|). However, we can use the following lemma to improve the time
complexity from quadratic to linear.

Lemma 6. The marginal reduction in reachability when an edge e = (u, v) is
added to the policy is the same as the size of the sub-tree which is induced by the
node v.

Proof. We recall that the marginal reduction in reachability, denoted by r(A \
π) − r(A \ π ∪ {e}) is the same as the number of nodes rendered unreachable
when edge e is deleted from the graph A \ π. Referring to Figure 1 we see that
this is essentially the size of the sub-tree rooted at v.

Thus, we can create a tree data structure, which stores at each node the size
of the sub-tree it would generate if the incoming edge to it is deleted. Given
the data structure, the marginal loss can be computed in a single breadth first
search traversal. Also since the number of edges is at most V , this takes O(|V |).
The total time of the modified greedy algorithm is O(kN |V |) which is linear in
the size of the attack graph.

6 Related Work

A closely related area is that of influence diffusion through social networks. The
question of influence maximization is one of finding the initial set of nodes to
infect in order to maximize spread of information over the network [9]. This has
been applied to study influence of users on their followers in a social network
[2], to examine cascade of news through the web [18] and the propagation of
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recommendations [17]. There has also been work on inferring the structures of
such networks [5] [6]. Our work differs from this line of research since our focus
is not on empirical analysis of diffusion but rather on modifying a network to
minimize the diffusion through it. A similar problem has been addressed in [11]
in a different application context, with a slightly different objective function and
constraints.

A closer line of inquiry is that of placing sensors to detect changes in the en-
vironment. [14], [19] use submodular maximization to maximize the information
gained by a sensor placement. There are also actuator placement problems [25]
that look to choose a set of actuators to maximize controllability of a control
network. Our work differs from this line of inquiry since our study of attack
graphs requires analysis of graph modification. Also, the metrics of interest are
very different.

7 Conclusion and Limitations

Critical infrastructures have complex networks which control unique processes.
In order to perform a successful attack on such a network, the adversary must
understand the network components they can leverage and the processes they
can affect. This requires a long and detailed reconnaissance phase. Thus, the
best opportunity for a defender is to harden against such recon activities. This
paper provides the defender with a systematic approach to making decisions
while limiting the cost of defense. We show that despite imperfect knowledge of
the attacker and their actions the defender can still improve their risk posture.
While the hardening problem is NP-hard we provide a linear time algorithm
with a provable approximation bound of 1− 1

e .
While this paper provides analysts with an algorithm for hardening their

network, there are a few limitations we wish to discuss. First, the loss distribution
is often not available to the analysts and while a metric like penetrability can
give some insights into the hardening process, in the future we hope to explore
other metrics that can capture the loss. Another assumption is the loss function
being monotone, however, with the growth of reactive security techniques like
honeypots, we will have to look into non-monotone loss in the future. Second, we
note that all properties studied in the paper hold only for the linear threshold
model and while this is a strong model for reconnaissance we might have to find
other models to capture other stages of the attack kill-chain.

A Proof of Theorem 1

Given an attack graph A = (V,E, p) we need to show that for any set π ⊆ E
and an edge e = (u, v) ∈ E \ π

R(A \ π)−R(A \ (π ∪ {e})) ≥ 0

This proof is very similar to the proof in [11] and only differs in our function
of interest (attack loss function).
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The space of attack scenarios ΩA\π, can be divided into three disjoint par-
titions based on the edge selected for node v. ΩeA\π (edge e = (u, v) is chosen),

ΩeA\π (a different edge e = (u
′
, v) is chosen) and Ω∅A\π (no incoming edge is

selected).
Now for, the space ΩA\(π∪{e}) we note that the space is a subset of ΩA\π

since any scenario graph in the former can be generated in the latter. Also, the
only scenarios not present in the former are ones where the edge e is involved.
Thus, ΩA\(π∪{e}) can be defined based on two partitions as: ΩeA\π ∪Ω

∅
A\π.

Using these disjoint partitions, we can write the difference as:

R(A \ π)−R(A \ (π ∪ {e}))

=
∑

A∈ΩeA\π

Pr[A|A \ π]L(A)

+
∑

A∈ΩeA\π

(Pr[A|A \ π]− Pr[A|A \ (π ∪ e)])L(A)

+
∑

A∈Ω∅
A\π

(Pr[A|A \ π]− Pr[A|A \ (π ∪ e)])L(A)

For the space ΩeA\π we have Pr[A|A \ π]− Pr[A|A \ (π ∪ e)] = 0 since from

Equation 6 we have, p(v,A,A\π) = p(v,A,A\ (π ∪{e})) = p(e). This is due to
the fact that in this space, under both cases, edge e is chosen for node v.

For the space Ω∅A\π we have:

Pr[A|A \ π]− Pr[A|A \ (π ∪ e)] = −pe
∏
v′ 6=v

p(v′, A,A \ π)

This stems from the fact that we can rewrite the above difference in terms of
the node v and all other nodes v′ 6= v as Pr[A|A \ π] − Pr[A|A \ (π ∪ e)] =∏
v′ 6=v p(v

′, A,A \ π)× [p(v,A,A \ π)− p(v,A,A \ (π ∪ {e}))].
As for the difference in probabilities when node v has no incoming edge we

see that it goes to −pe due to the fact that p(v,A,A \ π) = 1 −
∑
x∈E\π px =

1−
∑
x∈E\(π∪{e}) px − pe = p(v,A,A \ (π ∪ {e}))− pe.

Now consider the following two facts:

– Every graph A′ ∈ ΩeA\π has a corresponding graph A ∈ Ω∅A\π and vice versa

where A′ = A ∪ {e} i.e. they differ only in the edge e.
– A graph A′ ∈ ΩeA\π has probability Pr[A′|A \ π] = pe

∏
v′ 6=v p(v

′, A′,A\ π).
Note that this is essentially Equation 7 rewritten in terms of e.

Hence:

R(A \ π)−R(A \ (π ∪ {e})) =
∑

A∈Ω∅
A\π

Pr[A′|A \ π][L(A′)− L(A)]

Since this is a non-negative sum and by Lemma 2 we know that L(A′) −
L(A) ≥ 0 we can see that the risk function is monotone decreasing in the policy
π �
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